
-At89 229 ONLINE AIDING FOR HUMAN-COMPUTER INTERFRCES(U) MICHIGAN i/l
UNIV ANN ARBOR CENTER FOR ERGONOMICS J ELKERTON

I E 9 OCT 87 C4E-ONR-i W88614-87-K-8748

UNCLSSoIFIED F/G 23/2 MLIRIEIIIIIIIIIE
E~hEE~EE~hhh

ElllhEEEEllllE
llIIIllllEE

140 1j26

ilIN 1.8

I' LW IOIN HART

, -

~~~~~~~~~ONLINE AIDING FOR .. ........... . ,,

HUMAN-COMPUTER INTERFACES

Jay Elkerton
Center for Ergonomics

The University of Michigan

Technical Report C4E-ONR-1
October 9, 1987

Approved for public release; distribution unlimited.

I

ABSTRACT

pCurrent research is surveyed on interfaces which aid the computer user

The results of this review revealed that state-of-the-art knowledge in the design of these
aiding interfaces is lacking. Designers of aiding interfaces are only provided qualitative design
principles such as make the online help task oriented. As a result, many online aiding dialogues
fall far short of the ultimate goal of helping users with their current problems, while also
supporting continued skill acquisition at the computer interface. To address this problem, a
task-analytic approach is presented which is based on the GOMS model (Card, Moran, & Newell,
1983) of human-computer interaction. This theoretical approach allows online aiding
dialogues to be specified using the goals, operators, methods, and selection rules of the
computer interface. In addition, a fully specified GOMS model provides an opportunity for
usability problems to be identified analytically so that aiding dialogues can be implemented
effectively based on quantitative predictions of performance time, learning time, and user
memory load. Finally, this theory allows assistance and instructional dialogues to be simulated
to predict any improvements due to online aiding without extensive user testing.



SECURITY CLASSIFICATION OF THIS PAGE "

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Uncl ass i fied
2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

Tech. Rep. C4L-ONR-1 Tech. Rep. C4E-ONR-1

f NAME OF PERFORMING ORGANIZATION 6b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

iniversity of Michigan (f appicabli) Office of Naval Research

6c. ADDRESS (City. State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Center for Ergonomics 800 N. Quincy Street
1205 - IE Bldg. Arlington, VA 22217-5000
Ann Arbor, MI 48109-2117
Ba. NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable) Contract: N00U14-87-K-U740
Office of Naval Research lode 1142PS
k. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

80 N i tPROGRAM PROJECT TASK " WORK UNIT
A N. Quincy Street ELEMENT NO NO. NO ACCESSION NOArlington, VA 22207-6000 61iS3h 42 R 04209 R0420901 4429008

11 TITLE (Include Security Classification)

(U) Online aiding for human-computer interfaces

12 PERSONA AUTHOR(S)jay Elkerton

13a, TYPE OF RPORT 13b. TIME CQVERE% 414. DA FoRF JRT (Year, Month, Day) I5. P~id COUNTTechnical FROMt87-08-15TOB8-08 " 1 -"

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by'block number)

FIELD GROUP SUB-9ROUP" " uman-computer interaction, online aiding, assistance

" dialogues, instructional dialogues, online training, helD

systems, tutorials, task analysis, cognitive models GMS

ABSTRACT (Continue on rever se if necenari ideti bjlock number tr
(eed on in eraces WM h aid the computer user online. Results?)Current research is surve, a aew ~ i

snow that many online aiding dialogues fall far short of the ultimate goal of helping users

.ith their current problems, while also supporting continued skill acquisition 
at the computer

interface. To address this problem, a task-analytic approach is presented which is Dased on

the GOMS model (Card, Moran, & Newell, i983)-?ot huan-Somputer interaction. This model will

provide an oppor-tunity for usability problems to be identitied analytically, as well as to

allow assistance and instructional dialogues to be simulated in order to predict improvements
due to online aiding. '-

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

(PUNCLASSIFIED/UNLIMITED 0- SAME AS RPT 0OTIC USERS Unclass ified
.22a F ff AJLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Jn (202) 696-4502 Code 1142PS

DO FORM 1473.4 .MAR B3 APR edition may be used until exhuted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

. . . . . . . . . . JR. . " ' ' ' ' ' ; '" 
% ' ' ' '' '€

..



Table of Contents

Current problems in online aiding ....................................................................................... 2
A summary of prototypical online aiding dialogues .............................. 4

Online assistance dialogues ....................................................................................... 5
Online instructional dialogues ................................................................................. 11

A research and design framework for online aiding .......................................................... 19
A theory-based task-analytic model for online aiding ........................................... 19

Using goals in online aiding ......................................................................... 20
Using operators in online aiding ................................................................. 23
Using methods in online aiding .................................................................... 25
Using selection rules in online aiding ....................................................... 28
Summary: Using GOMS models in online aiding .......................................... 29

Predicting usability for online aiding .................................................................... 30
Predicting usability problems for online aiding ........................................ 30
Predicting improvements in usability with online aiding ......................... 33

Conclusions ............................................................................................................................ 34
Acknowledgments ................................................................................................................... 35
References ............................................................................................................................. 36

Tables

1. Dialogues for online help ................................................................................................ 7
2. Summary of the research on online help ...................................................................... 11
3. Dialogues for computer-supported interface training .................................................. 12
4. Summary of the research on computer-supported interface training ......................... 18
5. Requirements for a theory of online aiding ...................................................................... 1 9
6. Suggested design principles for providing online advice based on the GOMS model ......... 31

Figre

1. Goal list provided in a help interface for a hypothetical word-processor ................... 21
2. Example of operator-level help in the form of command lists in the Michigan

Terminal System - MTS ................................................................................................ 24
3. Help method for moving a window on a hypothetical computer workstation ................ 26

L - I

-- +I. " .



i
CURRENT PROBLEMS IN ONLINE AIDING

This report centers on the design of interfaces that aid the user in computer-based tasks.

The goal of these aiding dialogues is to provide details on the procedures for operating the

interface which may be unknown to the user. The claim made in this report is that current

dialogues for aiding the user of a computer interface are lacking due to fundamental problems

with the theories and methods used in the design of these human-computer interfaces.

Ultimately, the objective of an aiding dialogue is to improve both current and long-term

user performance with the computer interface. This is an ambitious goal which has not been

4realized in any aiding application to date. For the most part, aiding interfaces either attempt to

support current user performance (i.e., online assistance) or to facilitate long-term user

performance and understanding (i.e., online instruction) of a computer-based task (Elkerton &

Williges, in press). Although challenging, this goal poses an interesting theoretical question

which centers on the possible tradeoff between skill acquisition and performance. More

practically, this goal is important since computer users are faced repeatedly with the dilemma

of learning additional interface procedures while still trying to complete their current task

efficiently.

A variety of aiding dialogues have been developed and tested in the form of online assistance

(e.g., help interfaces) and online instruction (e.g., tutorials). Yet, despite this research, little

is known about how an online aiding dialogue can be constructed systematically to improve user

performance. In fact, it is not uncommon for online aids to increase the time a user requires to

0solve a problem (Czaja, Hammond, Blascovich, & Swede, 1986; Dunsmore, 1980; Elkerton &

Williges, 1984b; Relies, 1979). This report will illustrate these research limitations and

will introduce a theoretical approach to construct aiding dialogues which can assist users with

their current computer-based task while also fostering continued skill development with the

Icomputer interface.

2

F.- r r G,



Before reviewing the research literature in detail, some of the global reasons why

, Isuccessful aiding dialogues may be difficult to implement should be stated. One of the most

important reasons is that online assistance or instruction is not focused on the user's tasks and

goals. Online help, for instance, often is nothing more than an electronic version of a hard-

copy manual referencing only the commands and functions of the computer interface. Although

potentially useful for skilled users, these online manuals may be completely ineffective for

other less skilled or infrequent users who need detailed information on how to operate the

L'. mputer interface in a specific task. Indeed, Carroll and Mack (1984) have shown that users

are active learners who "learn by doing" a computer-based task rather than passively reading

documentation or following training materials. Given this task-oriented nature of users, it is

not surprising that representative aiding interfaces such as online tutorials may be difficult to

use (Carroll & Mazur, 1986).

The second reason for difficulties in developing aiding interfaces may stem from current

practices in software interface design. State-of-the-art design processes for aiding interfaces

(AI-Awar, Chapanis, & Ford, 1981), and user interfaces in general (Williges, Williges, &

Elkerton, 1987), use iterative design techniques with extensive user testing. These design

techniques are time consuming and costly since empirical data must be collected from interface

users. Consequently, iterative design procedures for developing aiding interfaces may be

limited since usability problems that are to be solved with online aiding cannot be identified

systematically until after the user interface is fully implemented. Thus, even with iterative

• .t development and user testing, the success of the aiding interface is not assured (Carroll &

' Mazur, 1986).

Finally, one of the basic reasons for poor aiding interfaces is that online aiding is not viewed

as an integral part of interface design (Kearsley, 1985). Rather, online user assistance and

3

6.



instruction is thought of as a remedy for poor interface design. This is probably the result of

the philosophical underpinnings of human factors which places emphasis on fitting the interface

I to the user and the related lack of systematic procedures for designing interfaces to aid the user.

Nevertheless, computer interfaces to complex systems demand both an elegant user interface

and aiding dialogues to support an unskilled or infrequent user on complicated and demanding

tasks. The practical need for online aiding is so strong that at least one human factors text

(Bailey, 1982) promotes facilitator design in systems development as a technique to design

support materials for the user interface. Although a useful reference, Bailey (1982) does not

provide much detail on the procedures for providing support materials online. This report will

demonstrate that further research is needed for theories and methods to include online aiding in

the interface design process and to complement current procedures for offline user support

(e.g., documentation and training).

A SUMMARY OF PROTOTYPICAL ONLINE AIDING DIALOGUES

The scientific literature surrounding online aiding in human-computer interfaces is broad

: and continues to expand to include applications such as decision aids, expert systems, natural

language interfaces, and intelligent tutoring. Despite this research, fundamental questions on

the design of these aiding interfaces for human use remain unanswered. To illustrate these

limitations, this summary will review the research on online help and computer-supported

interface training since these prototypical interfaces demonstrate two general approaches for

aiding computer users: aiding through online assistance and aiding through online instruction

(Elkerton & Williges, in press). This summary will attempt to illustrate why a theoretical

,i ~:approach to online aiding is necessary. More comprehensive treatments of the online aiding

literature are available in Carroll and McKendree (1987) and Elkerton and Williges (in

. "press).

:, 4



The goal of an assistance dialogue is to reduce the user's effort in accomplishing the current

computer-based task. Typically, online documentation, procedures, prompts, and cues are

provided to support user performance. Help systems, for example, provide the user with

additional details on possible functions and commands of the computer interface. Theoretically,

this supporting information will reduce the amount of learning, memory, and cognitive

processing required for the computer-based task resulting in a decrease in user time and

errors, and the need for user training and selection (Bailey, 1982).

Alternatively, instructional dialogues train and educate the user to increase knowledge of the

computer-based task and facilitate long-term performance. Thus, an instructional dialogue

may sacrifice current performance to improve task comprehension. These dialogues often

encourage the user to engage in additional exercises and practice to develop a deeper

understanding of the task. Examples of these instructional dialogues include computer-

supported interface training (AI-Awar, et al., 1981; Carroll & Mazur, 1986), computer-

based instruction (Eberts & Brock, 1984; Robinson & Knirk, 1984), and intelligent tutoring

(Sleeman & Brown, 1982).
-I

Online Assistance Dialogues

The most widely available assistance interface is the online help system. As discussed by

Shneiderman (1986), providing online help is attractive for several reasons. First, the user

does not need hard-copy manuals which take up workspace and possibly divert the user's

attention from the video display and computer-based task. Second, online help documents can be

modified relatively easily. Third, online help if designed with electronic indexes and cross-

references, can enhance the user's capability to retrieve documentation quickly. Finally, new

graphics technology in the form of diagrams and animation may aid users in understanding the

interface structure which may help users learn and remember computer-based procedures.

5



As a result of these possible benefits, there are a variety of help dialogues that have been

developed and identified by Borenstein (1985), Elkerton and Williges (in press), and Houghton

(1984). Table 1 presents a brief list of these help dialogues with appropriate references.

Clearly, there is no technology shortage for presenting help information. Unfortunately, few

behavioral investigations have been conducted on these help interfaces. And more importantly,

few studies have considered seriously how these help interfaces fit into the user's computer-

based task.

*Online manuals are good examples of problems with help interfaces. As mentioned

previously, help interfaces are often nothing more than online versions of hard-copy manuals

with keyword or menu-based mechanisms for accessing the help documentation. However, this

alone may not be problematic. The problem with electronic help manuals is that the knowledge

represented and accessed through the help interface is inadequate for many computer-based

tasks a user faces. Most users do not want a hierarchical list showing the syntax of a command.

Few users need this detailed, fact-oriented knowledge. Instead, many computer users need to

,,* know the methods to complete a task. Without this procedural knowledge (knowledge of how to

do things), users are left to browse through a wealth of information with little understanding of

what help topics may be useful. Indeed, some of the initial studies which found performance

decrements with online help (Dunsmore, 1980; Relies, 1979) may have been related to the

poor procedural content of the help dialogues and the resultant searching behavior which

disrupts the computer-based task.

Similar problems with an online manual for novice users were demonstrated by Cohill and

Williges (1985). These investigators evaluated eight types of help determined by help format

(online or hard-copy), help initiation (user or computer), and selection of help topic (user or

computer). The study compared these help conditions to a control condition where novices

received no help in the text-editing task. The results showed that all help conditions were

6



I

superior to the no help control group. However, the help systems which yielded the best

performance in terms of time and errors were conditions where novices initiated and selected

help material from a hard-copy manual.

Table 1

Dialogues for Online Help

1. Online manuals
(Cohill & Williges, 1985; Dunsmore, 1980; Relies, 1979)

2. Minimal help texts
(Carroll, Smith-Kerker, Ford, & Mazur, 1986)

3. Keyword help
(Borenstein, 1985; Houghton, 1984; Magers, 1983)

4. Menu-based help
(Borenstein, 1985)

5. Query-in-depth
* 6. (Houghton, 1984)

6 Concrete and simulated examples
(Grignetti, Hausmann, & Gould, 1975; Magers, 1983)

7. Command prompting
(Mason, 1986)

8. Context-sensitive help
(Borenstein, 1985; Fenchel & Estrin, 1982; Magers, 1983)

9. Task-oriented help
(Carroll, et al., 1986; Finin, 1982; Magers, 1983)

1 0. Window-based help
(Borenstein, 1985; Orwick, Jaynes, Barstow, & Bohn, 1986;
Teitelman, 1985; Walker, 1985)

S11. Diagrammatic help
(Sebrechts, Deck, & Black, 1983; Shneiderman, 1986)

12. Natural language help
(Borenstein, 1985; Wilensky, Arens, & Chen, 1984)

13. Intelligent online help
(Aaronson & Carroll, 1987; Fischer, Lemke, & Schwab, 1985)

One of the conclusions drawn by Cohill and Williges (1985) was that hard-copy manuals

allowed users to browse through help information while keeping the text-editing task on the

display. Still, users should not have to browse help information since this is time that users

could spend learning the computer-based task. If the online help information is condensed into

what the user needs to operate the interface, then less time will be spent looking for

7



i
information. Less display space also will be required so that both the computer-based task and

the online help can be presented simultaneously. Unfortunately, this online help research

Poffers little in terms of how help content could be designed to focus on the methods for operating

the user interface.

In current online help research what is typically presented are further technical solutions

to these display problems. For example, large-screen, bit-mapped displays now make it

possible to display large amounts of help information with the computer-based task. Examples

of this window-based help can be found in systems described by Orwick, et al. (1986),

Teitelman (1985), and Walker (1985). These window-based help systems may relieve the

short-term memory of the user by allowing visual comparison of the help file with the

computer-based task. Thus, the user's cognitive processing has been considered with window-

based help, but not rigorously. For example, consider the situation where five windows are

open on a screen. In this situation, the help window probably will have to overlap other

windows or the sizes of other windows will have to be reduced. Consequently, the user may still

not be able to see all the necessary information and may have to execute additional procedures to

manipulate these windows on the display. As Shneiderman (1986) has proposed, introducing a

help window actually may increase the cognitive load on the user.

Clearly, the methods for interacting and accessing help information is a significant problem

with user assistance and online help (Sondheimer & Relies, 1982). As an example, Borenstein

(1985) found that providing several access methods (i.e., window-based help, keyword help,

computer-initiated help, menu-based help, and context-sensitive help) in a single interface

called ACRONYM improved the performance of expert and novice users when compared to natural

language help and a standard online manual. In fact, the only help method shown to be superior

to ACRONYM was a human tutor. Borenstein (1985), however, was unable to isolate whether

hthe help access methods or the quality of the help text improved user performance.

8



On this very point, research conducted by Carroll, et al. (1986) has emphasized strongly

the need for well designed help texts in the form of minimal manuals. These minimal manuals

-! : attempt to reduce the verbiage of help texts, support error recognition and recovery, and focus

documentation on real tasks and activities. Applying these general principles for designing help

texts has demonstrated significant improvements over standard help manuals (Black, Carroll, &

McGuigan, 1987; Carroll et. al.). However, the specific procedures for adhering to these

guidelines for minimal manuals are not well developed and additional research is needed to

develop theory-based methods for constructing the substantive content of online help texts.

. As a further example of current research limitations with online help, consider the study

conducted by Magers (1983) on the effectiveness of a variety of help methods. A current help

interface in this study was enhanced by: (1) introducing a help key, (2) providing more

examples and a more concrete help text, (3) making the help more task-oriented, (4)

providing command synonyms and context sensitive help, (5) suggesting specific correction

methods in error messages, (6) allowing several methods for formulating help requests, (7)

minimizing the length of help, and (8) introducing feedback to confirm legal commands. User

£performance and attitudes toward this enhanced help interface improved significantly. Thus,

help interfaces can be improved. However, this study failed to determine which help method

had the largest impact on performance.

Beyond this literature, very little additional research exists on the behavioral efficacy of

online help systems. Dominating the literature are technical approaches to provide

, sophisticated help interfaces to users. Examples of these efforts are the context-sensitive help

interfaces developed by Fenchel and Estrin (1982), adaptive command-prompting interfaces

N(Mason, 1986), help systems that provide concrete simulations relevant to the user's task

I' (Grignetti, et al., 1975), help interfaces with natural language front-ends (Wilensky, et al.,

-s . 9



1984), and knowledge-based approaches to provide more intelligent online help (Fischer, et

al., 1985). These technical efforts explore the feasibility of new help interfaces. However,

few if any of these efforts focus on the user's needs for online assistance.

Addressing these user needs, Aaronson and Carroll (1987) have observed and analyzed the

dialogues between a user and human consultant to determine what inquiries and responses will

be required with more intelligent online help. In studying the verbal protocols of one-time

-.0 consultations through computer mail, these investigators identified several strategies which

d may be useful in future help systems. These strategies included: making explicit assumptions

about user goals, providing alternative solutions, assuming an interface configuration, avoiding

,. the problem, and pointing to reference sources. Although a useful and creative technique for

determining requirements for intelligent online help, the analysis of verbal protocols (not

unlike other data analysis techniques) is time consuming and requires considerable skill on the

part of the analyst. In addition, as will be illustrated later in the report, at least two of the

consultations would be expected from a theoretical analysis (making assumptions about goals,

and providing alternative solutions, i.e., methods for operating the user interface). These types

of observational approaches should be augmented with more theoretical methods to focus data

analysis and to assure that empirical data are interpreted appropriately.

Table 2 summarizes the research on online help. Based on this review, help interfaces can

- be designed to improve user performance. However, the help content and dialogues that actually

contribute to this improvement are relatively unknown. Thus, it is not surprising that some of

the investigations illustrate disruptive effects associated with online help since there is a lack

* of detailed procedures for developing the help interface with only qualitative principles (e.g.,

make the help more task oriented) to guide the designer. As result, the development of the help

interface must often proceed without any knowledge of the improvements in usability that will

result from the aiding dialogue. Without this, designers will be forced to adopt a technology-
1 0



driven approach for help interfaces which may or may not fit the needs of the user. What is

needed is an understanding of the interface methods that the user needs to extract from online

help and how this procedural information can be conveyed by the aiding dialogue without

disrupting the computer-based task. Moreover, this method-based information should be in the

form that designers can use with a minimum of time-consuming user testing.

Table 2

Summary of the Research on Online Help

1. Behavioral investigations are limited considering that online help is a major component of
-' many user interfaces.

2. Online help can be improved, however, a few investigations have illustrated the potential

for the disruptive effects of online help.

3. What little research has been done has generated qualitative principles for online help, but
has not identified clear procedures for developing and predicting the possible improvements
with help interfaces.

4. Currently, the primary focus is on the computing technology for developing new help
interfaces.

5. Little attention is paid to the method-based content required by the user of the help
interface.

6. Research and design of help interfaces, at this point, is tied to extensive user testing.

Online Instructional Dialogues

In contrast to the limited behavioral research on online help and user assistance dialogues,

instructional dialogues have a larger research base ranging from computer-based instruction

(CBI) to intelligent tutoring (IT). However, no attempt will be made to summarize the vast

literature surrounding CBI or IT. Rather, the emergent area of computer-supported interface

. training will be addressed since this research focuses on users acquiring interface skills. Table

* 3 lists some of these dialogues for interface training and appropriate references.

------- 1 1 .. *.~ ~ .- % ~



-- -~ - - - - - -. - - - -. - .- --

a
The most common example of computer-supported interface training is the online tutorial.

These programs attempt to provide general purpose instruction and practice on interface

procedures. To accomplish this, tutorials typically provide some relatively simple tasks that

users can practice at the interface. As an example, AI-Awar, et al. (1981) using iterative

design methods have developed and evaluated tutorials for acquainting new users with a

computer terminal. The online tutorials allowed users to focus directly on the keyboard and

display without switching their attention to an instructional manual. In addition, low-level

interaction skills which could transfer to other interface tasks (e.g., using specific keys) were

emphasized in these tutorials. Thus, tutorials may help in the acquisition of fact-related

information and basic procedural skills by focusing on specific interface operations (finding and

pressing keys) as opposed to more general interface methods (determining the correct sequence

of operations to accomplish a task).

Table 3

Dialogues for Computer-Supported Interface Training
---------------------------------------------------------------------

1. Online tutorials
(AI-Awar, et al., 1981; Carroll & Mazur, 1986; Czaja, et al., 1986)

2. Guided exploration and problem solving
(Carroll, Mack, Lewis, Grischkowski, & Robertson, 1985; Charneyq& Reder, 1986)

3. Training wheels interfaces
(Carroll & Carrithers, 1984; Catrambone & Carroll, 1987)

4. Scenario machines
(Carroll & Kay, 1985)

5. Command-selection aids
(Elkerton & Williges 1984b; 1987)

------------------------------------------------------------------

In fact, a study by Czaja, et al. (1986) has demonstrated that traditional tutorials can be

limited in their capability to train procedural skills beyond simple operations. These

12

-V%



investigators looked at three possible training strategies for a word-processing program

(Wordstar) which included online tutorial training, document-based training, and instructor-

Pbased training. The study found that users of online tutorials performed much worse on the

transfer tasks than users who received document and instructor-based training. The users of

k online tutorials accomplished fewer transfer tasks, took more time, and committed more

errors. Interestingly, the errors committed by these tutorial users on the word-processing

tasks indicated that they were not familiar with editing procedures such as inserting, deleting

or rearranging text. Tutorials were not effective in helping users learn procedures which are

necessary for actual word-processing tasks.

I..,

Why might traditional tutorials be limited in teaching general interface methods? It may be

that interface methods are not simply sequences of keystrokes, but a set of actions to accomplish

a user's task. Since traditional tutorials provide the materials and tasks for the user to

practice, they fail to integrate the interface actions with meaningful user goals. Thus, tutorials

irequire the user to practice tasks that are foreign to the actual work to be performed, and as a

-% result, may be passive learning devices which do not allow the user to actively explore interface

methods. In fact, Carroll and Mack (1984) have noted that many inexperienced users strike out

on their own, learning by doing a computer-based task rather than using a potentially time-

consuming tutorial.

Testing these hypotheses, Carroll, et al. (1985) have studied offline tutorials and "guided

exploration" manuals that are task-oriented, procedurally incomplete, modular, and capable of

supporting error recognition and recovery. Users of the guided exploration manuals spent more

time learning than users of the traditional tutorials. However, in transfer tasks users that

received the guided exploration manuals completed the tasks more efficiently and correctly than

tutorial users. Carroll, et al. argue that the success of this approach is related to reduced set of

instructional materials which focused the user on problem solving and exploration with the

13



word-processing interface. In addition, Carroll and his colleagues state that guided exploration

provided users with much more information on how to recover from task-related errors.

p When compared to a guided exploration users, traditional tutorial users spent more time and

' -effort dealing with errors while learning.

Further support for a problem-solving orientation when training users has been provided

by Charney and Reder (1986). These investigators found that users who solved task-oriented

problems when learning a spread-sheet interface did much better on new problems than users

provided step-by-step tutorial instructions. However, similar to the Carroll, et al. (1985)

study, the tradeoff for this improved transfer performance was additional time for users to

solve the problems during training. As discussed previously, tutorials are limited in teaching

procedural skills since users may have difficulty applying the step-by-step procedures and

specific examples to realistic tasks. Yet, the alternative of supporting active learning also has a

cost in terms of additional training time.

One solution to this tradeoff may be to exploit active learning in the actual interface. Carroll

and Carrithers (1984), for example, have developed a training-wheels interface which allowed

new users to explore a word-processing interface while doing meaningful tasks. This modified

word processor supported initial user learning by blocking advanced features and allowing only

basic word-processing operations (i.e., creating, editing, and printing documents). The results

!of this investigation found that more users of the training-wheels interface completed a letter

printing task and did so faster than users of a complete word processor. Carrol! and Carrithers

explained the success of the training wheels approach through users gaining feedback without

suffering the negative consequences of error states. In addition, Carroll and Carrithers noted

that the training-wheels interface may be a more effective learning environment since the

number of system functions was limited and allowed users to form and test hypotheses regarding

.0 word-processing methods in a smaller domain.

14

.0



Extending and validating these results, Catrambone and Carroll (1987) have compared the

training-wheels interface to a complete word processor both during learning and a transfer

task where users attempted to use additional word-processing features. As in the previous

-'.4 investigation, the training wheels interface helped users complete their training faster than

users of a complete word processor. More significantly, the training wheels interface assisted

computer users in learning additional functions of the word processor faster than users of the

_ complete word processor.

Catrambone and Carroll (1987) ascribe this improvement in training and transfer to the

reduced complexity of the training wheels interface which allowed users to more fully

understand and apply the basic interface methods to the advanced procedures of the word-

processing software. Specifically, many of the common menu skills learned by users in the

training wheels system may have transferred to the advanced functions. This result comes

closest to the goal of designing an aiding interface which allows users to complete current

computer-based tasks while also encouraging further skill development with the interface. The

",' success of this progressive exposure to the user interface demands that theoretical models be

developed for identifying the common methods for staged interface training. That is, the

designer needs systematic procedures to determine which methods can be used in learning more

• . complex interface skills.

In a similar extension of the training wheels approach, Carroll and Kay (1985) have

implemented and evaluated several "scenario machines" where a new user of a word-processing

i .. system is guided through a single method or scenario for creating and printing a document. The

goal of this research was to determine what combination of user prompting, feedback, and error

correction facilitated training and transfer in a word-processing task. Overall, the results

from Carroll and Kay were in agreement with the training-wheels research (Carroll &

Carrithers, 1984). Scenario machines which guided the user in using a single method for

15
N' ..



creating and printing a document reduced training time significantly when compared to a control

group with a complete word processor.I
However, Carroll and Kay (1985) found that transfer performance for users of scenario

machines did not differ from those users with a complete word processor. In fact, prompting

and feedback in some scenario machines was damaging to transfer performance. This suggests

that the training dialogue (i.e., additional prompts and feedback for user actions) could have

destroyed the coherence of the computing tasks. The training dialogue, whether it be staged

disclosure of the interface methods or explicit training prompts and cues, must be carefully

specified and evaluated to assure an effective aiding interface. Indeed, a challenge for computer-

supported interface training is to develop theoretical methods which will predict the usability

of these online aiding dialogues. With theoretical models, aiding dialogues which might interfere

with user performance could be identified quickly and other more promising aiding dialogues

targeted for further refinement.

As a final example of computer-supported interface training, Elkerton and Williges

(984b; 1987) have investigated a variety of command-selection dialogues for improving the

strategies and performance of novice users in file-search environments. With these aiding

dialogues, novices were presented command-selection advice that prompted novices to use more

*.." powerful search commands typically selected by experienced users.

" In the first experiment, Elkerton and Williges (1984b) demonstrated that novice

computer users could be trained to learn more sophisticated search commands when

automatically provided hints on the frequency of command use by more experienced users.

However, the price paid by users with this computer-initiated, command-selection advice was

an increase in time and effort to interpret and use this advice. Admittedly, advising novices by

Bpresenting the frequently selected commands of more experienced users is an impoverished

16

it



aiding dialogue that contains no procedural, command-sequence, or planning information for file

search (Elkerton & Williges, 1985). However, the research demonstrates that novices could

use this limited command-selection feedback to facilitate skill development with search

strategies.

In an extension of this research, Elkerton and Williges (1987) developed additional

command-sequence and plan-based models and explored alternative aiding dialogues (i.e., user-

initiated, computer-initiated, and mixed-initiated - both user and computer initiated) in an

attempt to alleviate some of the intrusiveness of the command-selection advice. In other words,

the research goal was to diminish the apparent tradeoff between novice acquisition of more

powerful search skills and their current file-search performance. Similar to the results of

Elkerton and Williges (1984b), command-selection aids improved the search performance and

- -- strategies of slow novices when the command-selection models were not unduly complicated

(i.e., frequency models and plan-based models) and when the online aiding did not introduce a

highly interactive, mixed-initiative dialogue.

These command-selection experiments (Elkerton & Williges, 1984b; 1987) illustrate the

1variety of methods for instructing users on interface procedures ranging from simple hints on

frequently used commands to step-by-step plans of command-selection. Unfortunately, the

procedures for constructing these command-selection models are based on collecting and

analyzing the command-selection performance of expert users. Such an empirical strategy

requires substantial time and effort to build the command-selection models and is not practical

for a new user interface. Thus, a systematic procedure to specify the command-selection model

would be useful. In addition, similar to the implications drawn from the research on scenario

* machines (Carroll & Kay, 1985), the intrusiveness of the mixed-initiative dialogue

underscores the need for theoretical models to predict when online aiding will not lead to

improved performance at the user interface.

1 7

LO



------- We.~---. - - - - - -

Table 4 summarizes the research on computer-supported interface training. As illustrated

by this brief review, there is no lack of data. Moreover, the results from the literature are

.-. encouraging and suggest some basic principles for assisting users both with short-term

learning and long-term skill acquisition. For example, principles such as reduce the

complexity of the initial training interface, decrease the possibility for user errors, and

progressively expose the user to the interface methods are sound recommendations for

developing aiding dialogues based on well-known learning principles. In fact, these

recommendations are based on age-old learning principles: providing positive reinforcement

- (achieving task goals) rather than punishment (making errors at the user interface) to

O"N %improve learning (Thorndike's truncated law of effect) and using part-whole training

paradigms. Not surprisingly, there are many other learning principles (see Kyllonen &

Alluisi, 1987) which are applicable and should be used to lessen the required testing of users

during design of computer-supported interface training. However, the principles need to be

placed within a usable framework so that the method-based content of instructional dialogues

can be developed along with theoretical usability predictions for the aiding dialogue.

Table 4

Summary of the Research on Computer-Supported Interface Training

1. Behavioral investigations are available that demonstrate that computer-supported interface
training can decrease the training time and also promote skill transfer.

2. These behavioral investigations have generated a set of principles based on theories of
human learning.

3. These principles, however, do not provide the designer with the appropriate methods to
,,' determine what should be trained and do not provide a mechanism for predicting the

usability of an instructional dialogue.

4. Research on interface training is empirical in nature requiring the instructional interfaces
to be tested extensively with users.

1 8



i

A RESEARCH AND DESIGN FRAMEWORK FOR ONLINE AIDING

PGiven the limitations to the online aiding approaches a more formal and theoretical model

should be adopted for the detailed development of these dialogues. As outlined in Table 5, this

theoretical model should: (1) describe how the aiding dialogues should be implemented, (2)

determine when online aiding is necessary in a human-computer interface, and (3) be capable

of predicting the effectiveness of the aiding dialogues without a complete implementation of the

user interface. With this theory-based approach, development of aiding interfaces should

proceed quickly from initial design to final implementation due to more formal analysis and less

trial and error testing of the aiding dialogues. In addition, developing this theory of online aiding

."N should provide a more systematic method for evaluating aiding interfaces since it will be

possible to identify and separate the procedural knowledge presented by online aiding from the

dialogue used to deliver this assistance or instruction.

UTable 5
Requirements for a Theory of Online Aiding

0 The theory should be capable of providing the substantive content for the aiding
dialogues.

* The theory should be capable of predicting when and where online aiding is necessary
through analysis of user interface tasks.

The theory should be capable of predicting any improvements in usability which will
result from the aiding dialogues.

----------------------------------------------------------------------

A Theory-Based Task-Analytic Model for Online Aiding

Describing how aiding dialogues should be implemented requires a task analysis. Certainly,

recommending that a task analysis be conducted before developing training materials (Goldstein,

1987) or job aids (Swezey, 1987) is not a new idea and is a major part of Instructional

19

4%



Systems Development (see Meister, 1985). However, using a cognitive task analysis which

focuses on the procedural knowledge required to operate a computer interface in detailed

development of online aiding is a relatively new and powerful concept. In fact, a great deal of

research has been conducted in cognitive psychology focusing on this knowledge and has resulted

K in a computer modeling approach in the form of production systems (see Anderson, 1983).

These rule-based systems have the capability to represent symbolically human procedural

knowledge to simulate and predict human performance. Performing this type of cognitive task

analysis will allow the identification of detailed interface procedures which could be used as the

substantive content for the aiding dialogues and will also introduce a capability to predict human

performance with these aiding interfaces.

The task-analytic approach for defining the cognitive procedures that a user must perform

at the computer interface is best summarized by Card, Moran, and Newell (1983). These

investigators developed a model for describing the user's interface knowledge in terms of Goals

0 (what the user must accomplish), Operators (the individual actions, such as pressing a key

. or moving a mouse), Methods (step-by-step procedures for accomplishing goals), and

Selection Rules (heuristics for specifying which method to use in specific circumslances).

This GOMS model is gaining acceptance as a method for analyzing what the user must know to

operate the computer interface. Moreover, the importance and power of this. approach for

online aiding is clear since GOMS is a top-down specification of the procedural knowledge that

could be used to specify online aiding during interface design. That is, not only can GOMS

models be used to design a user interface, but the goals, operators, methods, and selection rules

also can be used to provide online assistance and instruction, if necessary. In the following

sections examples of online aiding for each component of the GOMS model will be presented.

Using goals in online aiding. Identifying the goal structure of a task is a commonly

advised strategy for tutoring students in new problem-solving domains (Anderson, Boyle,

20

V%,%



Farrell, & Reiser, 1984) and for assisting computer users during sessions with a human

consultant (Aaronson & Carroll, 1987). Consequently, goal-level aiding is particularly

appropriate for advising new users on what can be accomplished at a computer interface. For

example, as suggested by Elkerton (1987) the help system of word-processor could provide a

- list of the goals so that a new user could quickly learn what can be accomplished with the

OR interface (see Figure 1). Indeed, providing this goal-level advice was one of the guiding

principles in the successful design of training wheels interfaces (Carroll & Carrithers, 1984;

Catrambone & Carroll, 1987) and minimal manuals (Carroll, et al., 1986).

With this word-processor you can:

Type a manuscript
Edit a manuscript
Print a manuscript
Delete a manuscript

Type the first letter to get more information on these tasks.

Figure 1. Goal list provided in a help interface for a hypothetical word-processor (adapted
- from Elkerton, 1987).
a.

Goals as online advice describe to the user what can be done at the interface in a task-

oriented language (Carroll, et al., 1985). Ideally, goal-level aiding should enable users to

transfer appropriate procedural knowledge from the task domain to learning how to use the

interface. Users with this type of online advice should understand quickly the procedural

objects and actions of the interface. According to Charney and Reder (1986), this knowledge of

basic concepts and functionality of the interface is a critical component for initial skill

learning.

21

IL L



As shown in Figure 1, an important feature of a goal tree for online aiding is that the

hierarchical structure can be used to describe additional procedural details by accessing

I subgoals for each high-level goal. For example, subgoals such as find a string and move a line

could be presented below the higher-level goal of edit a manuscript. Thus, the interface

structure is easily conveyed to the user in terms of what the user can accomplish. Catrambone

Pand Carroll (1987), for instance, state that one of the advantages of the training-wheels

interface was that users were made aware of the procedural structure of the interface.

This multi-level description is also convenient for providing users an adjustable level of

\ "~ detail on interface procedures as recommended by Anderson, et al. (1984). Thus, experienced

, users only may need to be reminded that a word-processor allows you to move text, while a less

experienced user may need additional information on the subgoals of moving text such as select,

cut, and paste text. In addition, Carroll, et al. (1985) suggest that providing information on

-the goals and subgoals would be procedurally incomplete advice to be used actively by users.

U With this information users could explore (Carroll, et al.), elaborate (Reder, Charney, &

Morgan, 1986), problem solve (Charney & Reder, 1986), or make inferences about interface

methods (Black, et al., 1987) to improve their understanding and performance in the

+ computer-based task.

-.. Goals as online advice also provides a convenient mechanism for presenting feedback to the

Vuser on their interface actions and may be useful for error recovery. The training wheels

interface of Carroll and Carrithers (1984) demonstrates this point. Since only a limited set of

interface goals was available, users were provided immediate feedback on the correctness of

their actions. Moreover, if users committed an error, they were able to recover from the error

-, .relatively easily and subsequently were reminded through the menu which word-processing

goals were appropriate. That is, goals as online advice can serve to keep users focused on the

h task so that they do not become entangled with other interface details. This has been confirmed

22.q ;

• n' l,"#- . -,p .''-" :. -', ," :-t'. .+ ++ l, . ". J '.". 
' ,

'.. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-,u+++ . .. . .



by McKendree and Carroll (1987) who found that error-blocking with goal feedback helped

users complete computer-based office tasks faster and also increased the number of users who

completed a transfer task.

Finally, using high-level goals as advice may provide modularity so that assistance and

instruction can be focused on relatively independent interface tasks (Carroll, et al., 1985).

Using goals provides a focus for the aiding dialogue so that assistance and instruction on specific

tasks can be separated from other interface knowledge. In other words, formalizing the

procedural knowledge in a goal tree can form the basis for aiding techniques such as learning by

, ~parts and by successive approximations (Anderson, et al., 1984). Thus, the decomposition of

*the procedural knowledge defines what should be presented in online aiding and also provides an

effective diagnostic tool for determining what the user is trying to accomplish at the interface.

Using operators in online aiding. Presenting operators as online advice is more or

less standard practice with online help and tutorials. Specific examples of operator-level

,- .. aiding include help systems which provide command lists (see Figure 2) and tutorials which

ask users to perform simple actions such as finding and pressing keys. With this impoverished

type of online aiding, many online help systems (Dunsmore, 1980; Relies, 1979) and online

tutorials (Carroll & Mazur, 1986; Czaja, et al., 1986) are difficult to use since operators are

only a small part of the procedural knowledge required to operate the interface. Moreover, as

illustrated by Figure 2 presenting all of this operator knowledge can be overwhelming to a

novice user making it a difficult task to select the appropriate topic for online assistance.

Application of the GOMS model would suggest that additional knowledge must be provided such as
, which object the operator acts on (e.g., open a file), what other actions follow or precede the

present operator, and where a specific operator is used in a computer-based task. In short,

- operator-level aiding probably should be augmented with knowledge about goals, methods, and

selection rules.

23

Iq

p -,



Nevertheless, operator-level aiding may be useful if the costs for current user

performance are understood. Specifically, operator-level aiding frequently requires additional

time and effort for the user to process and apply this knowledge in their computer-based task.

Users actively processing this information can experience improvements in long-term

performance and understanding. An example of this tradeoff of current performance with future

task performance can be seen in the research conducted by Elkerton and Williges (1984b;

1987) on command-selection aids for novice users. In these studies, dramatic increases in task

times frequently were observed when providing command-selection advice. However, after

receiving this command-selection advice novices enriched their command-selection strategies,

and consequently improved their long-term performance.

MTSCommandsMenu

Type the number or name of one of the MTS commands listed in the menu
b eIow to get information about that command.

1 ACCOUtNTING 2 ALTER 3 CALC 4 CANCEL 5 COMMENT
6 CONTROL 7 COP 8 CREATE 9 DEBUG 10 DESTROY
11 DISPLAY 12 DUMP 13 DUPLICATE 14 EDIT 15 EMPTY
16 EXPLAIN 17 FLE ENU 18 FILESTATUS 19 HEP 20 IF
21 LIST 22 LOAD 23 LOC 24 LOCKSTATUS 25 LO
26 MAKE 27 MESSAGESYSTE 28 MOIFY 29 MOUNT 30 $MTS
31 NET 32 PERMIT 33 RELEASE 34 RENAME 35 RE ER
36 RERUN 37 RESTART 38 RUN 39 3E 40 SET
41 SCOJF 42 SIGNON 43 SINK 44 SOURCE 45 START
46 SYSTEMSTATUS 47 TRUNCATE 48 U'LOCK 48 UNLOAD

Press CRTL-E to leave HELP mode. CRTL-C for help on using the screen.
NumericPad 1/END to enter a topic name or number you have typed
or the key alone for the previous topic (MTS COMMANDS)

Topic selection:

e" Figure 2. Example of operator-level help in the form of command lists in the Michigan
Terminal System - MTS (University of Michigan Computing Center, 1984).

In addition, operator-level aiding may be highly appropriate for more skilled users. In

these aiding applications, users may have the requisite procedural knowledge to understand

2 4

,.-'.p:~****
-,-..

e

.:.::.- -,:.-...:.- ....:.---:,..,:--. , ,::,,:.. .: ::: .,-::::::-.:.: :: : _ - -, ;'-, ,.Th,.S..'. G;., .,- ' :,"



suggestions for detailed interface operations. An example of this operator-level aiding for more

skilled users is the "Did You Know" interface implemented by Owen (1986) to provide users

with information on novel command applications which were suggested by other users. This

operator-level aiding for more experienced users, however, needs further research to

determine its potential usefulness.

A final use of interface operators in online aiding concerns the monitoring of user actions.

Operators such as keystrokes and mouse movements are typically the only behaviors which can

be monitored directly at the user interface. As an example, the last keystroke or command must

be monitored with context-sensitive help (Borenstein, 1985; Fenchel & Estrin, 1982).

However, it must be emphasized that monitoring only at the operator level may not be the most

effective strategy for online aiding. Research support for this can be seen in the work of

Elkerton and Williges (1984b) who found that online advice could be presented at very

inappropriate times when monitoring novices on infrequently used commands. In addition,

extending this operator monitoring strategy to second-order command transitions was equally

or even more disrupting to novices (Elkerton & Williges, 1987). Thus, monitoring operators

will probably require accessing additional procedural knowledge in the form of goals, methods,

and selection rules.

Using methods in online aiding. Providing methods as online advice is one of the more

7obvious techniques for aiding and was suggested by Aaronson and Carroll (1987) in the analysis

of dialogues between computer users and human consultants (i.e., providing alternative

solutions). The value of this online aiding is that the step-by-step procedures can be presented

to the user to solve specific interface problems. Until recently method-level advice has not been

incorporated into many aiding interfaces. However, new user interfaces such as the Digital

VAXstation II (Digital, 1986) and the Xerox ViewPoint workstation (Xerox, 1986) are

25



beginning to include method-level help for such activities as window management. An example

of this method-level help has been presented by Elkerton (1987) and is shown in Figure 3.

To move a window:

1. Place the arrow inside the window you want to move.

2. Hold the LEFT mouse button and move the mouse to re-position the
window.

3. Release the mouse button.

-. Figure 3. Help method for moving a window in a hypothetical computer workstation (adapted
from Elkerton, 1987).

E Based on the reviewed research, methods appear to be well suited for helping the user with

their current computer-based task (online assistance), but may be limited in helping users

acquire skills for improved long-term performance at the user interface (online instruction).

For example, both Carroll and Kay (1985) and Charney and Reder (1986) have found that

training time is substantially reduced when users are provided a single step-by-step method.

However, in both of these investigations advanced performance in a transfer task was not

improved significantly as a result of a receiving a single interface method. In addition,

Elkerton and Williges (1987) have found that novices prefer step-by-step procedures while

learning a file-search task, but did not improve their transfer performance beyond other

* novices receiving less complete command-selection advice (frequency and sequence of file-

search commands).

The capability for method-level advice to improve current interface performance is an

important characteristic and should be explored further. For example, McKendree and Carroll

(1987) found step-level feedback (what users should do next) after blocking errors with

computer-based office tasks similar in effectiveness to goal-level feedback (what users are

26

rN



trying to accomplish). As pointed out by Elkerton and Williges (1987), method-level advice

may be useful in reducing the users' cognitive load while learning a new task. However, this

benefit must be weighed against the problem of "spoon-feeding" users rote procedures which

may not lead to additional acquisition of interface skills (McKendree & Carroll).

The problem with method-level knowledge for skill acquisition may be that a method is too

specific for users to apply beyond the current problem-solving context. Further research must

be conducted to determine how methods could be generalized so that learners can use this

procedural knowledge to solve their current problem, while also acquiring skills which will

help them in future tasks. In fact, current research by Lewis, Casner, Schoenberg, and Blake

(1987) has introduced the concept of learning fr3m a procedural demonstration. The thesis of

this research is that users are capable of learning interface methods from simple

demonstrations of command use and often do not need explicit procedures or multiple examples

for acquiring interface skills. The heuristics for identifying interface methods that can be

effectively demonstrated are just being developed (i.e., mapping rules between user actions and

system responses). However, the use of procedural demonstrations may be a powerful learning

technique if principles can be validated for choosing the methods to be demonstrated.

Similar to goal-level advice, the grain-size of the method presented to the user is critical to

the ultimate success of online aiding (Anderson, et al., 1984) and should be investigated within

the hierarchical GOMS model. In addition, alternative mechanisms for conveying this method-

based knowledge to users should be investigated. In particular, graphical flow diagrams (Bauer

& Eddy, 1986; Sebrechts, et al., 1983) seem appropriate since method-based knowledge

consists of a series of procedural steps and decisions. With a graphical presentation, users may

be better able to remember method-based knowledge.

27



Interface methods also may be useful from the monitoring perspective in online aiding.

Ideally, a user's methods could be tracked and alternate methods suggested when appropriate.

An example of this method-based monitoring has been developed by Finin (1982) as an online

help system called WIZARD. In brief, WIZARD attempted to diagnose inefficient user plans for

executing commands in an operating system. For instance, if the user was deleting old versions

of a file repeatedly with "delete, WIZARD would detect this activity and suggest an alternative
.211

'. - and more efficient interface method such as purging old files in a single step. Obviously,

monitoring and inferring appropriate interface methods is a complicated activity which

requires further research. In fact, novel solutions such as asking the user what they are

. attempting to do from a reduced set of inferred methods may reduce sorle of the reasoning that

may be needed in an online aiding system.

Using selection rules in online aiding. Unlike the previous components of the GOMS

model, selection rules are seen rarely in online aiding, but may be necessary when there are

, Imultiple interface methods and when the user is unaware of the reasons for using a specific

method. As an example of a situation in which selection rules might be helpful, consider the

word-processing task where users have to search a file for text to be modified. In these search

tasks, Elkerton and Williges (1984a) have found large differences in strategies of novice and

.-' experienced users indicating that these two groups of users may have different rules for

choosing commands. Novices scrolled and paged through a file, while more experienced users

also selected string search procedures. Consequently, novices may have been unaware of the

appropriate selection rule for using the string search procedures. A selection rule which Card,

L d ~et al. (1983) have formulated for file search states that scrolling methods should be used when

.the estimated distance to the text is relatively small (e.g., less than 4 lines) and string search

methods should be used when the distance to the text is relatively large (e.g., 4 lines or

,, -. greater). Novices may benefit by having a selection rule like this presented to them. Indeed,

28

'O.



Charney and Reder (1986) have stated that an important component in skill acquisition is

learning the context in which a procedure is applied.

Interestingly, an alternative approach to providing the selection rules as advice is to

present appropriate problem-solving examples for user skill acquisition. Elkerton and

Williges (1984b; 1987), for example, aided novices in the acquisition of command-selection

strategies without explicitly providing selection rules, but by prompting novices to use an

appropriate command in a representative search task. Novices improved their search

strategies with this advice. However, as mentioned previously, the cost of this approach was a

. decrease in performance during the online aiding. Reder and Charney (1986) argue similarly

% *". that the success of their problem-solving approach when training novices on spread-sheet

commands may have been due to users learning when to apply the commands.

Therefore, the question which remains based on this theoretical treatment is whether

explicitly presented selection rules are superior to presenting appropriate task examples so

that the user can infer and develop their own selection rules. The challenge, perhaps, is to

develop an effective means for communicating the relevant features of selection rules. Possible

. presentation techniques include the previously mentioned flow diagrams where selection rules

could be presented in a diagram illustrating the interface method graphically. Similarly, other

display techniques such as decision tables (Gettys, 1986) should be considered for these "if-

11 then" selection rules.

.Summary: Using GOMS models in online aiding. The thesis of this section has been

*I that components of the GOMS model could serve as the substantive content of aiding dialogues,

while also providing a theoretical basis for evaluating these dialogues. To summarize, Table 6

i "presents a set of suggested principles for the design of online aiding interfaces based on what is

known about each component of the GOMS model. For the most part, these principles are only

29



i
working hypotheses that require further experimental validation. Consequently, the designer

must interpret these suggestions with care, while also monitoring the new empirical research

in this rapidly evolving area.

,, As illustrated in Table 6, there are numerous design suggestions which emerge by looking at

each individual component of the GOMS model. However, online aiding would probably be best

served if these model components and dialogues were combined into a single aiding interface.

, Goals, operators, methods, and selection rules all should be incorporated into an aiding interface

either in presenting this procedural knowledge to users or in using this knowledge to monitor

and diagnose problems that a user may have in operating the interface. Taken together, these

GOMS models may be similar to the plan-based models proposed by Riley and O'Malley (1984)

and Hayes and Williges (1986) for understanding human-computer interaction.

Predicting Usability for Online Aiding

The GOMS task-analytic approach for specifying the procedural details of aiding dialogues also

can provide two necessary ingredients for effective online aiding interfaces shown in Table 5.

First, given a GOMS specification, detailed quantitative models, such as Keystroke models (Card,

et al., 1983) and production rule systems (Kieras & Poison, 1985) can be used to predict

usability problems with the interface which could be remedied with an online aid. Second, with

the GOMS model providing the substantive detail, aiding dialogues could be specified and the

interface re-analyzed to determine the impact of online aiding.

Predicting usability problems for online aiding. The most well developed aiding

V. dialogue will be useless if it is provided when the user does not require assistance or

instruction. Fortunately, identifying usability problems which may be addressed with online

aiding follows directly from a theory-based, task analysis of the user interface. Specifically,

V" 30
a.



Table 6

Suggested Design Principles for Providing Online Advice Based on the GOMS Model

Use goals In online aiding to:

1. Describe what can be done in task-oriented terms (interface actions and
objects) for improved initial skill learning.

2. Provide an adjustable level of detail on interface procedures for accommodating
the information needs of a wide range of users.

3. Provide procedurally incomplete advice so that users can actively learn for
improved long-term performance and understanding with the interface.

% ~ 4. Provide feedback to users which may help in reminding them of appropriate
procedures to use particularly when recovering from errors.

5. Develop modular assistance and instructional dialogues that can be used to
describe similar and dissimilar procedural elements of the interface.

Use operators In online aiding to:

1. Describe simple actions, such as pressing specific keys or finding specific objects on
the display, that are common to many interface procedures to assist the user in
current task performance.

2. Provide detailed knowledge of interface procedures that inexperienced users can
actively learn and that more skilled users can combine with other procedural
knowledge to improve long-term performance and understanding of the interface.

3. Monitor user actions to provide context sensitive help or to actively diagnose user
problems.

Use methods In online aiding to:

1. Present step-by-step interface procedures to assist the user with specific problems.
2. Improve user understanding and acceptance of online advice.
3. Decrease the cognitive load of users who are learning a new interface task by

providing an explicit procedure for users to follow.
4. Provide procedural demonstrations of interface procedures so that users can quickly

learn simple operations.
5. Map sequences of user's actions to a reduced set of interface goals to help provide

context-sensitive advice to users.

S". Use selection rule* In online aiding to:

1. Help users select between multiple interface methods.

2. Provide users with an understanding of representative tasks to increase their
' knowledge of when to apply specific interface skills.

U 31

,A , o

a. %



ri

predictions of extreme performance times, learning times, and user memory loads can be

described through detailed GOMS models.P
Performance times can be estimated with fair accuracy by using the Card, et al. (1983)

Keystroke model. With this model, total time to execute a task can be predicted simply as the

sum of individual operator times and requires that the interface method be specified at the level

of operators (e.g., keystrokes, mouse movements, and glances to and from the display). As a

result, if there are alternative interface methods, then the user could be monitored and

prompted to use more time efficient methods in specific circumstances. To use the example

provided by Finin (1982), if the user's goal was inferred to be "delete the old versions of a

file" and the user was repeatedly employing the delete command, then the aiding interface could

suggest the purge command since repeated use of delete will yield extreme performance times.

Learning times also can be predicted based on a detailed GOMS analysis formulated as a

S production rule system (Kieras & Poison, 1985). Using production system models, Poison and

Kieras (1985) have found that the number of production rules (i.e., if-then rules) can

quantify the amount of procedural knowledge required to learn an interface. These investigators

Ufound that a simple count of the number of rules associated with methods and selection rules can

predict learning time. Moreover, Poison, Bovair, and Kieras (1987) have found that transfer

of training can be predicted by determining the number of new rules to be learned (as opposed to

identical rules and rules that can be generalized). Thus, ease of learning can be predicted for a

-" specific interface based on the number of new rules to be learned in a task. If this predicted time

is extreme, appropriate training procedures could be implemented to simplify the learning

environment (e.g., training wheels interfaces and progressive part training) with similar and

dissimilar rules dictating the presentation of interface methods. For example, if a text editor is

difficult to learn, a production rule analysis may suggest initial training of procedures for

32
.'oA



selecting text since these interface methods are required for many other commands (e.g., copy,

delete, etc.).

Finally, the theory-based GOMS model also permits analysis of other cognitive factors such

as working memory loads (Kieras & Poison, 1985) which may be an important factor in

Ilearning and using a computer interface. Specifically, the memory loads experienced by the

user can be estimated by counting the goals and subgoals activated during a cognitive simulation

with a production system model. From this analysis, predictions of user errors could be

generated with the expectation that periods of high memory loads would result in more errors

than periods of low memory loads. High working memory loads also may decrease learning and

performance times since the user will have to share their limited capacity working memory

when learning interface methods (Kieras & Bovair, 1986). Therefore, if these periods of high
.'

working memory loads can be predicted, then additional prompts and cues could be provided by

the aiding interface to support error-free and time efficient user performance.

Predicting Improvements in usability with online aiding. Once usability

problems are identified and initial solutions for aiding the user specified, then the GOMS and the

Pdetailed usability prediction models can be used to determine any performance improvements

with online aiding (i.e., decreased performance times, learning times, or mental workload).

For this to be possible, the aiding dialogues must be specified in enough detail to determine the

goals, operators, methods, and selection rules for the user interacting with the aiding interface.

* However, the approach is feasible if a top-down design strategy is followed using the GOMS

model as a method for specifying the aiding dialogues.

The importance of this prediction capability is clear when considering that this review

uncovered several aiding dialogues which increased task performance times. Ultimately, this

predictive capability could be used as an early indicator of problems with aiding interfaces and

%33

.. u 3 3



potentially could be used to screen inferior aiding dialogues. Indeed, the intrusiveness of many

aiding dialogues may be the result of aiding methods which are inconsistent with the rest of the

user interface. Thus, users might have to interact much differently with the online help and

.,.. tutorials. Specifying the online aiding dialogue and predicting its usability will allow a much

more powerful research and design strategy for online aiding. As with other user interfaces,

the impact of the aiding interface should be assessed before it is implemented.

CONCLUSIONS

This report has reviewed the literature on aiding interfaces which attempt to assist and

instruct users on a computer-based task. The review revealed that many of the efforts to
4"

construct interfaces to aid the user have met with mixed success. Many aiding dialogues can

4l only assist the user on the current computer-based task, while other instructional dialogues

4 - can only help users acquire knowledge for improved long-term performance. In fact, many-. 4-

aiding interfaces do not improve performance and even when performance enhancements are

19 observed, the characteristics of online aiding which contributed to the improvement often

cannot be isolated.

® To remedy these problems, a task-analytic approach for research and development of aiding

interfaces was described based on the existing GOMS model of human-computer interaction

(Card, et al., 1983). This theory-based approach seeks to develop a principled method for the

development of online aiding where each component of the GOMS model (goals, operators,

methods, and selection rules) provides the framework for the aiding dialogue. In addition, the

- .r task-analytic approach permits a quantitative assessment of user interface problems which can

o* be solved with online aiding and also provides a method for predicting any improvements in

usability as a result of the aiding dialogues.

34



,Like all formal theoretical models, this approach has limitations which require further

research. For example, the GOMS and Keystroke models of Card, et al. (1983) were developed

based on skilled and error-free performance. How can these models be applied to aiding users

who are generally unskilled and frequently commit errors? Similarly, the GOMS approach

'" does not explicitly address the individual differences of users which may play a role in the

success of an aiding interface. The response to these challenges is that these task-analytic

procedures approximate user behavior and reveal the interface methods which play a large role

in interface usability. Therefore, task-analytic approaches offer few solutions for addressing

the individual differences of users. User errors, however, may be handled in a cognitive task

analysis by looking at the cognitive processes and interface methods which may lead to errors

- (e.g., high working memory loads) or by analyzing the error recovery methods of users.

Clearly, theory-based, task-analytic models are a rigorous engineering approach for

solving some of the usability problems associated with online aiding interfaces and user

. interface in general. Cognitive task analyses provide methods to construct aiding interfaces

through GOMS models and a way to evaluate the success of the aiding dialogues with usability

predictions. Therefore, this approach may be a useful supplement to state-of-the-art iterative

design methods which require extensive user testing for the development of aiding interfaces. In

fact, this theory-based approach should make it possible to develop systematically aiding

, :~interfaces capable of helping computer users on their current task, while also encouraging

their continued acquisition of interface skills.

ACKNOWLEDGMENTS
The author would like to thank David E. Kieras for numerous discussions which resulted in

6

the theory-based approach to online aiding and Susan L. Palmiter for her comments on drafts of

this report. This work was supported, in part, by a contract from the Office of Naval Research

under ONR contract number N00014-87-K-0740 with John J. O'Hare serving as the technical

monitor.
35

--- ----



REFERENCES

IAaronson, A., & Carroll, J. M. (1987). Intelligent help in a one-shot dialogue: A protocol study.
In Proceedings of CHI+GI 1987 (pp. 163-168). New York: ACM.

AI-Awar, J., Chapanis, A., & Ford, W. R. (1981). Tutorials for the first time computer user.
IEEE Transactions on Professional Communication, 24, 30-37.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R. , Boyle, C. F., Farrell, R., & Reiser, B. J. (1984). Cognitive principles in
p the design of computer tutors (Tech. Rep. No. ONR-84-1). Pittsburgh, PA: Carnegie

Mellon University, Department of Psychology.

Bailey, R. W. (1982). Human performance engineering. Englewood Cliffs, NJ: Prentice-
Hall.

Bauer, D. W., & Eddy, J. K. (1986). The representation of command language syntax. Human
Factors, 28, 1-10.

Black, J. B., Carroll, J. M., & McGuigan, S. M. (1987). What kind of minimal instruction
manual is most effective? Proceedings of CHI+GI 1987 (pp. 159-162). New York:
ACM.

Borenstein, N. S. (1985). The design and evaluation of on-line help systems.
Unpublished doctoral dissertation, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum.

Carroll, J. M., & Carrithers, C. (1984). Blocking learner errors in a training-wheels system.
Human Factors, 26, 377-390.

Carroll, J. M., & Kay, D. S. (1985). Prompting, feedback, and error correction in the design of
a scenario machine. In Proceedings of CHI'85: Human Factors in Computing
Systems (pp. 149-153). New York: ACM,

Carroll, J. M., & Mack, R. L. (1984). Learning to use a word-processor: By doing, by
thinking, and by knowing. In J. C. Thomas & M. L. Schneider (Eds.) Human factors in
computer systems (pp. 13-51). Norwood, NJ: Ablex.

Carroll, J. M., Mack, R. L., Lewis, C., Grischkowski, N., & Robertson, S. (1985). Exploring
exploring a word processor. Human-Computer Interaction, 1, 283-307.

Carroll, J. M., & Mazur, S. A. (1986). LisaLearning. Computer, 19 (11), 35-49.

Carroll, J. M., & McKendree, J. (1987). Interface design issues for advice-giving expert
systems. Communications of the ACM, 30, 14-31.

36-w

',,7. 3- 6

Dw



,. Carroll, J. M., Smith-Kerker, P. L., Fcrd, J. R., & Mazur, S. A. (1986). The minimal
manual (Research Report RC 11637). Yorktown Heights, NY: IBM T. J. Watson Research
Center.

,.,

Catrambone, R., & Carroll, J. M. (1987). Learning a word-processing system with training
wheels and guided exploration. In Proceedings of CHI+GI 1987 (pp. 169-174). New
York: ACM.

Charney, D. H., & Reder, L. M. (1986). Designing interactive tutorials for computer users.
Human-Computer Interaction, 2, 297-317.

Cohill, A. M., & Williges, R. C. (1985). Retrieval of HELP information for novice users of
interactive computer systems. Human Factors, 27, 335-344.

: :,- Czaja, S. J., Hammond, K., Blascovich, J. J., & Swede, H. (1986). Learning to use a word-
processing system as a function of training strategy. Behaviour and Information
Technology, 5, 203-216.

Digital Equipment Corp. (1986). MicroVMS Workstation User's Guide (Order Number:
AA-EZ24B-TN). Maynard, MA: Digital Equipment Corp.

Dunsmore, H. E. (1980). Designing an interactive facility for non-programmers. In
" Proceedings of the ACM National Computer Conference (pp. 475-483). New

York: ACM.

Eberts, R., & Brock, J. F. (1984). Computer applications to instruction. In F. A. Muckler
(Ed.), Human Factors Review: 1984 (pp. 239-284). Santa Monica, CA: Human
Factors Society.

Elkerton, J. (1987). A framework for designing intelligent human-computer dialogues. In G.
Salvendy (Ed.), Cognitive Engineering in the Design of Human-Computer

*• -'- Interaction and Expert Systems (pp. 567-574). Amsterdam, The Netherlands:
Elsevier.

Elkerton, J., & Williges, R. C. (1984a). Information retrieval strategies in a file-search
environment. Human Factors, 26, 171-184.

Elkerton, J., & Williges, R. C. (1984b). The effectiveness of a performance-based assistant in
an information retrieval environment. In Proceedings of the Human Factors Society
28th Annual Meeting (pp. 634-638). Santa Monica, CA: Human Factors Society.

6 Elkerton, J., & Williges, R. C. (1985). A performance profile methodology for implementing
.- .,assistance and instruction in computer-based tasks. International Journal of Man-

- Machine Studies, 23, 135-151.

., Elkerton, J., & Williges, R. C. (1987). A summary of experimental research on command-
O selection aids. In Proceedings of INTERACT'87, Second IFIP Conference on

Human-Computer Interaction. (pp. 937-942). New York: North-Holland.

Elkerton, J., & Williges, R. C. (in press). Dialogue design for intelligent interfaces. In M. H.
Chignell, P. A. Hancock, & A. Loewenthal (Eds.), Intelligent Interfaces: Theory,
research, and design. New York: North Holland.

Fenchel, R. S. & Estrin, G. (1982). Self-describing systems using integral help. IEEE
Transactions on Systems, Man, and Cybernetics, 12, 162-167.

37



aWWI UUWVVW W WJW', 'o-,,+ r - -. . , w . -V ,ag o r r , .a rv , , + , r , - 'C Z7.r:,
.

' 'W , ,- +-, ,P r- .

Finin, T. W. (1982). Help advice in task oriented systems (Tech. Rep. No. MS-CIS-
1982-22). Philadelphia: University of Pennsylvania, The Moore School, Department of
Computer and Information Science.

Fischer, G. Lemke, A., & Schwab, T. (1985). Knowledge-based help systems. In Proceedings
of CHI'85 Human Factors in Computing Systems (pp. 161-167). New York: ACM.

Gettys, D. (1986). IF you write documentation, THEN try a decision table. IEEE
Transactions on Professional Communications, 29, 61-64.

Goldstein, I. L. (1987). The relationship of training goals and training systems. In G. Salvendy
(Ed.) Handbook of human factors (pp. 963-975). New York: Wiley.

Grignetti, M. G., Hausmann, C.j & Gould, L. (1975). An intelligent on-line assistant and tutor-
-NLS-SCHOLAR. Proceedings of the National Computer Conference, 44, 775-
781.

Hayes, B. C., & Williges, R. C. (1986). Defining search strategies in information retrieval. In
Proceedings of the Conference on Systems, Man, and Cybernetics (pp. 1092-
1096). New York: IEEE

Houghton, R. C. (1984). Online help systems: A conspectus. Communications of the ACM,
27, 126-133.

Kearsley, G. (1985). Embedded training: The new look of computer-based instruction.
Machine-Mediated Learning, 1, 279-296.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text: A production-
system analysis of transfer of training. Journal of Memory and Language, 25, 507-
524.

Kieras, D. E., & Poison, P. G. (1985). An approach to the formal analysis of user complexity.
International Journal of Man-Machine Studies, 22, 365-394.

Kyllonen, P. C., & Alluisi, E. A. (1987). Learning and forgetting facts and skills. In G.
Salvendy (Ed.) Handbook of human factors (pp. 124-153). New York: Wiley.

Lewis, C., Casner, S., Schoenberg, V., & Blake, M. (1987). Analysis-based learning in
human-computer interaction. Proceedings of INTERACT'87, Second IFIP
Conference on Human-Computer Interaction. (pp. 275-280). New York: North-
Holland.

Magers, C. S. (1983). An experimental evaluation of on-line HELP for non-programmers. In
Proceedings of CHI'83: Human Factors in Computing Systems (pp. 277-281).
New York: ACM.

Mason, M. V. (1986). Adaptive command prompting in an online documentation system.
International Journal of Man-Machine Studies, 25, 33-51.

McKendree, J., & Carroll, J. M. (1987). Impact of feedback content in initial learning of an
office system. In Proceedings of INTERACT'87, Second IFIP Conference on
Human-Computer Interaction (pp. 855-859). New York: North-Holland.

3e 38

L?',



n.FUW .u, 4

Meister, D. (1985). Behavioral analysis and measurement methods. New York:
Wiley.

Orwick, P., Jaynes, J. T., Barstow, T. R., & Bohn, L. S. (1986). DOMAIN/DELPHI: Retrieving
documents online. In Proceedings of CHI'86 Human Factors in Computing
Systems (pp. 114-121). New York: ACM.

, Owen, D. (1986). Answers first, then questions. In D. A. Norman & S. W. Draper (Eds.),
User centered system design (pp. 361-376). Hillsdale, NJ: Lawrence Erlbaum.

Poison, P. G., Bovair, S., & Kieras, D. E. (1987). Transfer between text-editors. In
Proceedings of CHI+GI 1987 (pp. 27-32). New York: ACM.

Poison, P. G., & Kieras, D. E. (1985). A quantitative model of the learning and performance of
text-editing knowledge. In Proceedings of CHI'85: Human Factors in Computing
Systems (pp. 207-212). New York: ACM.

Reder, L. M., Charney, D. H., & Morgan, K. (1986). The role of elaborations in learning a
skill from an instructional text. Memory and Cognition, 14, 64-78.

Relies, N. (1979). The design and implementation of user-oriented systems.
Unpublished doctoral dissertation, University of Wisconsin, Madison, WI.

Riley, M. S., & O'Malley, C. (1984). Planning nets: A framework for analyzing user-
computer interactions. In Proceedings of INTERACT'84, First IFIP Conference on
Human-Computer Interaction (pp. 513-518). New York: Elsevier.

Robinson, E. R. N., & Knirk, F. G. (1984). Interfacing learning strategies and instructional
strategies in computer training programs. In F. A. Muckler (Ed.), Human Factors
Review: 1984 (pp. 209-238). Santa Monica, CA: Human Factors Society.

. - Sebrechts, M. M., Deck, J. G., & Black, J. B. (1983). A diagrammatic approach to computer
instruction for the naive user. Behavior Research Methods and Instrumentation,
15, 200-207.

Shneiderman, B. (1986). Designing the user interface. Reading, MA: Addison-Wesley.

Sleeman, D., & Brown, J. S. (1982). Intelligent tutoring systems. New York: Academic
Press.

Sondheimer, N. K., & Relies, N. (1982). Human factors and user assistance in interactive
computer systems: An introduction. IEEE Transactions on Systems, Man, and
Cybernetics, 12, 102-107.

Swezey, R. W. (1987). Design of job aids and procedure writing. In G. Salvendy (Ed.)
Handbook of human factors (pp. 1039-1057). New York: Wiley.

Teitelman, W. (1985). Cedar programming environment. SIGGRAPH Video Review, 19, 8.
*~4

University of Michigan Computer Center. (1984). MTS: The Michigan Terminal System.
Ann Arbor, MI: The University of Michigan.

Walker, J. (1985). The document examiner. SIGGRAPH Video Review, 19, 4.

39



L~ -MwW, '1'- '- .

Wilensky, R. , Arens, Y., & Chen, D. (1984). Talking to UNIX in English: An overview of UC.
Communications of the ACM, 27, 574-593.

Williges, R. C., Williges, B. H., & Elkerton, J. (1987). Software interface design. In G.
Salvendy (Ed.) Handbook of human factors (pp. 1416-1449). New York: Wiley.

Xerox Corp. (1986). Training and reference: Xerox ViewPoint (Publication No:

610E01460). El Segundo, CA: Xerox Corp.

04



Distribution List for This Report

Dr. Earl Alluisi
Office of the Deputy Under Secretary

of Defense
OUSDRE (E & LS)
Pentagon, Room 3D129
Washington, DC 20301

DEPARTMENT OF THE NAVY

Aircrew Systems Branch
Systems Engineering Test
Directorate
U.S. Naval Test Center
Patuxent River, MD 20670

Dr. Glen Allgaier Mr. Philip Andrews
Artificial Intelligence Branch Naval Sea Systems Command

. Code 444 NAVSEA 61 R2
Naval Electronics Ocean System Center Washington, DC 20362
San Diego, CA 92152bl

, Dr. L. Chmura Dr. Stanley Collyer
Computer Sciences & Systems Office of Naval Technology
Code 5592 Code 222
Naval Research Laboratory 800 North Quincy Street
Washington, DC 203650 Arlington, VA 22217-5000

* Commander Dean of the Academic Departments
- Naval Air Systems Command U.S. Naval Academy

Crew Station Design Annapolis, MD 21402
NAVAIR 5313
Washington, DC 20361 Dr. Robert A. Fleming

R, /. Human Factors Support Group
Director Naval Personnel Research &
Technical Information Division Development Center
Code 2627 1411 South Fern Street
Naval Research Laboratory Arlington, VA 22202-2896

IWashington, DC 20375-5000
.Mr. Jeff Grossman

Dr. Eugene E. Gloye Human Factors Laboratory, Code 71
ONR Detachment Navy Personnel R&D Center

, N1030 East Green Street San Diego, CA 92152-6800
Pasadena, CA 91106-2485

Human Factors Department
Human Factors Branch Code N-71
Code 3152 Naval Training Systems Center
Naval Weapons Center Orlando, FL 32813
China Lake, CA 93555



Capt. Thomas Jones
Human Factors Engineering Code 125
Code 441 Office of Naval Research
Naval Ocean Systems Center 800 North Quincy Street
San Diego, CA 92152 Arlington, VA 22217-5000

Dr. Michael Letsky Lt. Dennis Mc Bride
,." Office of the Chief of Naval Human Factors Branch

Operations (OP-01B7) Pacific Missile Test Center
Washington, DC 20350 Point Mugu, CA 93042

LCDR Thomas Mitchell Dr. George Moeller
Code 55 Human Factors Department
Naval Postgraduate School Naval Submarine Medical Res Lab
Monterey, CA 93940 Naval Submarine Base

Groton, CT 06340-5900
Capt. W. Moroney
Naval Air Development Center Dr. A.F. Norcio
Code 602 Computer Sciences & Systems
Warminster, PA 18974 Code 5592

,," .. Naval Research Laboratory
CDR James Offutt Washington, DC 20375-5000
Office of the Secretary of Defense
Strategic Defense Initiative Organization Perceptual Science Program (3 copies)

, -,- .Washington, DC 20301-5000 Office of Naval Research
DPCode 1142PS
Dr. Randall P. Schumaker 800 North Quincy Street
NRL A.I. Center Artington, VA 22217-5000
Code 7510
Naval Research Laboratory LCDR T. Singer
Washington, DC 20375-5000 Human Factors Engineering Division

- Naval Air Development Center
Dr. A.L. Slafkosky Warminster, PA 18974

m. Scientific Advisor
Commandant of the Marine Corps Special Assistant for Marine
Washington, DC 20380 Corps Matters

CoC8OtMC
Mr. H. Talkington Office of Naval Research
Engineering & Computer Science 800 North Quincy Street
Code 09 Arlington, VA 22217-5000

- Naval Ocean Systems Center
r -San Diego, CA 92152

DEPARTMENT OF THE ARMY

Director, Organizations and Systems Dr. Michael Drillings
Research Laboratory Basic Research Office

U.S. Army Research Institute Army Research Institute
5001 Eisenhower Avenue 5001 Eisenhower Avenue
Alexandria, VA 22333-5600 Alexandria, VA 22333-5600

2



i
Technical Director Dr. Edgar M. Johnson
U.S. Army Human Engineering Laboratory Technical Director
Aberdeen Proving Ground, MD 21005 U.S. Army Research InstituteqAlexandria, VA 22333-5600

DEPARTMENT OF THE AIR FORCE

Dr. Kenneth R. Boff
AF AMRL/HE
Wright-Patterson AFB, OH 45433

Mr. Yale Smith
Rome Air Development
Center, RADC/COAD
Griffiss AFB
New York 13441-5700

Dr. Charles Bates, Director
Human Engineering Division
HSAF AMRL/HES
Wright-Patterson AFB, OH 45433

OTHER GOVERNMENT AGENCIES

Defense Technical Information
Center

Cameron Station, Bldg. 5
Alexandria, VA 22314 (2 COPIES)

Dr. Clinton Kelly
Dr. M.C. Montemerlo Defense Advanced Research
Information Sciences & Projects Agency
Human Factors Code RC 1400 Wilson Boulevard
NASAHOS Arlington, VA 22209
Washington, DC 20546

OTHER ORGANIZATIONS

Dr. H.E. Bamford Dr. Michael Athans
Program Director Massachusetts Inst. of Technology

Division of Information, Lab Information & Decision Systems
Robotics and Intelligent Systems Cambridge, MA 02139

National Science Foundation
Washington, DC 20550 Ms. Bonnie E. John

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

3



Dr. Thomas G. Moher
Dept. of Electrical Engineering

and Computer Science Dr. Allen Newell
University of Illinois at Chicago Department of Computer Science
P.O. Box 4348 Carnegie-Mellon University
Chicago, IL 60680 Pittsburgh, PA 15213

Dr. Jesse Orlansky Dr. Richard Pew
Institute for Defense Analyses Bolt Beranek & Newman, Inc.
1801 N. Beauregard Street 10 Moulton Street
Alexandria, VA 22311 Cambridge, MA 02238

Dr. Scott Robertson Dr. H.P. VanCott
Department of Psychology NAS-National Research Council
Rutgers University (COHF)
Busch Campus 2101 Constitution Avenue, NW
New Brunswick, NJ 008903 Washington, DC 20418

,

94

I 'A ', , '' '



- -w - S. - _ w

.'

%. .%

7'-.

-. /,-

_-p'

..-. - ,. ,, , . , , , . _:. .,,- .,, , , . ... - , , , , ,-,., ..


